[发布日期:2022-11-02 16:33:37] 点击:
以Underfill为例,在CSP、BGA、POP、Flip chip等工艺中中底部填充是封装技术中关键的工艺流程之一。简单来说,底部填充工艺(underfill)是将环氧树脂胶水点涂在倒装晶片边缘,液体通过气液界面处的毛细作用渗透到狭窄的间隙中,这一过程称为微毛细管流动。倒装芯片封装中,将底部填充环氧树脂填充到芯片和基板之间的间隙中,以防止焊料凸点上的裂缝和热疲劳导致的电气故障。硅芯片和有机基板之间的热膨胀系数 (CTE) 的巨大差异可能会在热循环期间对互连造成显着的热应力。因此,底部填充环氧树脂可通过 CTE 失配缓解应力,并减少基板的冲击和变形,以及保证焊点的可靠性。

然而,随着倒装焊球间隙的缩小,焊球数量不断地增加,底部填充工艺难度越来越大,分段点胶以及不同点胶方式的配合使用环境下,底部填充材料的流动路径也变得更加复杂,因此容易在固化后产生孔洞, 进而可能导致产品的可靠性下降,出现封装失效的问题。
经过对大量失效产品的分析与总结,底部填胶中的空洞秋葵视频黄色一般分为三种:分别是随机分布型空洞、助焊剂残留型孔洞和空气内包型空洞。
随机分散型孔洞形成的原因主要包括两个方面:1.基板吸湿;2.待点胶产品在烘烤固化前吸湿。基板本身是高分子复合材料,生产车间中存在一定的湿气,吸湿的基板在点胶后, 潮气依然吸附于基板面,经固化烘烤后可能依然有部分残存在封装体内部。
溶解与扩散是解决秋葵视频黄色空洞问题的两大基本原理,结合设备的功能从微观层面来说,空气是无法和胶材进行反应的气体,但仍然会溶于胶材,之所以溶解度不佳,主要原因是他们的对称性和线性导致了它们的偶极矩为零,这就导致它们无法与胶材中的分子有较强的相互作用。但是它们仍然能溶于胶材,这是因为电子云是不断运动的,总会有电子分布不均匀的时候,所以在某一瞬间它们的瞬时偶极或者诱导偶极会和胶材分子的永恒偶极作用,简单来说就是气体和胶材分子之间范德华力克服了气体分子的动能,从而微溶于胶材。但是并不是所有气体分子都会被“困住”,因为根据波尔茨曼分布(Boltzmann distribution),只有少部分动能极小的分子才能被微弱的范德华力给束缚住。
温度和压力是改变气体在液体中的溶解度两个要素。温度越低,溶解度越大,压强越大,溶解度越大。
综上所述,秋葵视频破解版用于底部填胶的高分子聚合物胶材随着温度的变化会有从玻璃态-高弹态-黏流态的转变,因此针对于材料每个状态的温度区间,秋葵视频破解版可以通过多重多段弹性的调节秋葵下载app下载免费版ELT秋葵视频破解版设备腔体内的温度与压力达到去除秋葵视频黄色的目的。以底部填胶的秋葵视频黄色为例,在完成点胶后界面存在多处大小各异的秋葵视频黄色。将产品放置真空压力除泡设备,给与腔室内压力、温度,亦或真空,腔室内的环境急剧的转变,使得秋葵视频黄色逃逸出界面以达到完全填覆的目的。完成内包型秋葵视频黄色除泡后,随着开始升温固化胶材中仍然有一定几率析出微秋葵视频黄色,所以秋葵视频破解版在固化的前进行增压,同时将不再是一段式或两段式升温,在中间温度与高温段之间插入一个或多个中温段, 这样的多段升温增压固化有助于秋葵视频黄色的完全消除。